Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35204451

RESUMO

Ultrasound shear wave elastography (SWE) is an increasingly used imaging modality that expands clinical ultrasound by measuring the elasticity of various tissues, such as the altered elasticity of tumors. Peripheral nerve tumors are rare, have been well-characterized by B-mode-ultrasound, but have not yet been investigated with SWE. Given the lack of studies, a first step would be to investigate homogeneous peripheral nerve tumors (PNTs), histologically neurofibromas or schwannomas, which can occur in multiple in neurofibromatosis type 1 and 2 (NF1 and 2), respectively. Hence, we measured shear wave velocity (SWV) in 30 PNTs of 11 patients with NF1 within the median nerve. The SWV in PNTs ranged between 2.8 ± 0.8 m/s and correlated with their width and approximate volume but not with their length or height. Furthermore, we determined the extent to which PNTs alter the SWV of the median nerve for three positions of the wrist joint: neutral (zero-degree), individual maximal flexion and maximal extension. Here, SWV was decreased in NF1 patients compared to age- and sex-matched controls (p = 0.029) during maximal wrist extension. We speculate that the presence of PNTs may have a biomechanical impact on peripheral nerves which has not been demonstrated yet.

2.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960581

RESUMO

Shear wave elastography (SWE) is a clinical ultrasound imaging modality that enables non-invasive estimation of tissue elasticity. However, various methodological factors-such as vendor-specific implementations of SWE, mechanical anisotropy of tissue, varying anatomical position of muscle and changes in elasticity due to passive muscle stretch-can confound muscle SWE measurements and increase their variability. A measurement protocol with a low variability of reference measurements in healthy subjects is desirable to facilitate diagnostic conclusions on an individual-patient level. Here, we present data from 52 healthy volunteers in the areas of: (1) Characterizing different limb and truncal muscles in terms of inter-subject variability of SWE measurements. Superficial muscles with little pennation, such as biceps brachii, exhibit the lowest variability whereas paravertebral muscles show the highest. (2) Comparing two protocols with different limb positioning in a trade-off between examination convenience and SWE measurement variability. Repositioning to achieve low passive extension of each muscle results in the lowest SWE variability. (3) Providing SWE shear wave velocity (SWV) reference values for a specific ultrasound machine/transducer setup (Canon Aplio i800, 18 MHz probe) for a number of muscles and two positioning protocols. We argue that methodological issues limit the current clinical applicability of muscle SWE.


Assuntos
Técnicas de Imagem por Elasticidade , Braço , Elasticidade , Humanos , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
3.
Front Physiol ; 12: 724755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975515

RESUMO

So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...